이번에는 앞서 공부한 상태옵저버를 이산시스템에 적용시켜 보겠다.


실제 개발환경에서는 연속시스템이 아닌 이산시스템을 기반으로 하기 때문이다. 하지만 그렇게 큰 차이는 없다.



연속시스템과 다른부분은 x(k+1)일 것이다. x의 k+1에서의 상태는 k일 때의 x와 u에 의해 정해진다. 따라서 A와 B역시 이를 고려하여 설계해야겠다.




위 세식은 연속시스템과 같은 방식으로 도출할 수 있다.

아래 식을 보자



즉, 에러 e의 안정적인 수렴을 위해서는 (A-LC)의 pole이 단위원 내에 존재해야 한다.

-----------------------------------------------------------------------------------------

위 실선까지가 앞선 연속시스템을 이산시스템으로 옮긴것이다. 지금까지는 센서를 통한 측정값과 추정값간의 오차를 줄여나가는 제어를 다루었다. 이에 더 나아가 예측값까지 다루고자한다.


우선, 예측과 추정은 어떻게 다를까?

예측은 '다음'을 내다보는 것이고, 추정은 측정된 정보에 대하여 판단하는 것이다. 아래 식을 보자.

  : k타임에서 예측한, k+1타임에서의 예측값

 예측값을 토대로한 k+1타임에서의 추정값


k타임의 추정 x와 입력 u를 기반으로 다음 타임인 k+1에서의 상태x를 '예측'하였다. 이는 실제 k+1타임이 오기전, k타임에서 내다본 예측이다.

k+1타임이 되면서 측정출력 y(k+1)와 예측출력 y(k+1|k)간의 오차와 예측상태 x(k+1|x)를 기반으로 추정상태 x(k+1|k+1)을 구하였다.


측정한 상태 x(k+1)과 출력 y(k+1)에는 실제값과는 다른, 노이즈가 있을 수 있다. 추정값과 측정값사이의 오차 e가 0으로 수렴한다면, 그리고 시스템의 제어를 이 추정값을 기반으로 한다면 측정값 x에 노이지가 발생하더라도 이의 영향을 최소화 할 수 있다.


위의 모든 식을 통해 아래와 같은 결론이 나온다. 증명은 스스로 해보자


'제어특론' 카테고리의 다른 글

Linear Quadratic(LQ) Optimal Control  (1) 2014.11.02
Optimal Control(1)  (0) 2014.10.05
Design of state observers(2)  (0) 2014.10.05
Design of state observers(1)  (0) 2014.10.05
상태 피드백 제어와 옵저버  (0) 2014.10.05
시작하기에 앞서  (0) 2014.10.05

+ Recent posts